

DATA SHEET

ANTI SURGE AND ANTI SULFURATION AUTOMOTIVE GRADE CHIP RESISTORS

AS series 0.5%, 1%, 5%, 10%, 20%

sizes 0603/0805/1206

RoHS compliant & Halogen free

YAGEO

SERIES

SCOPE

This specification describes AS0603 to AS1206 chip resistors with lead-free terminations made by thick film process.

<u>APPLICATIONS</u>

- Telecommunications
- Power supplies
- Car electronics

FEATURES

- AEC-Q200 qualified
- Superior to AS series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AS \underline{XXXX} \underline{X} \underline{X} \underline{X} \underline{XX} \underline{XXXX} \underline{L}

(2) (3) (4) (5) (6)

(I) SIZE

0603 / 0805 / 1206

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

07 = 7 inch dia, Reel 7W = 7 inch dia, Reel & 2×3 standard power

7T = 7 inch dia. Reel & 3 x standard power

47 = 7 inch dia. Reel & $4 \times$ standard power

(6) RESISTANCE VALUE

$| \Omega \le R \le | M \Omega$

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

 $(100 \text{ K}\Omega)$

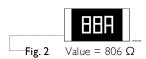
Letter L is the system default code for ordering only. (Note)

number Resistance coding rule	Example
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	$10R = 10 \Omega$ $97R6 = 97.6 \Omega$
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 KΩ)	IK = I,000 Ω 9K76 = 9760 Ω
XXKX (10 to 97.6 KΩ)	$10K = 10,000 \Omega$ 97K6= 976,000 Ω
XXXK	100Κ = 100,000 Ω

Resistance rule of global part

ORDERING EXAMPLE

The ordering code for an AS0805 chip resistor, value $10~\text{K}\Omega$ with $\pm 5\%$ tolerance, supplied in 7-inch tape reel is: AS0805JR-0710KL.


Chip Resistor Surface Mount AS SERIES 0603/0805/1206

MARKING

AS0603

1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series

1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

AS0805 / 1206

Both E-24 and E-96 series: 4 digits, $\pm 0.5\%$ & $\pm 1\%$

First three digits for significant figure and 4th digit for number of zeros

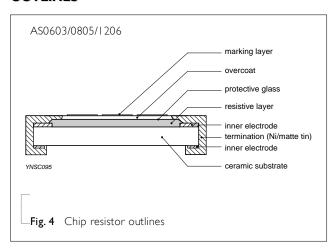
NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

TAPING REEL & POWER

Table I

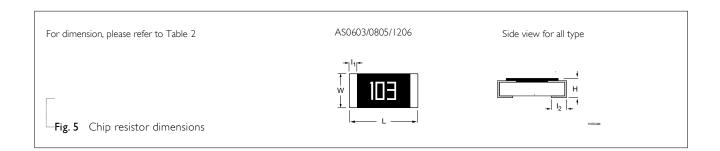
		F	POWER, W (P70)	
TYPE	CODING			
	07	7W	7 T	47
0603	1/10	1/5	1/4	-
0805	1/8	1/4	1/3	1/2
1206	1/4	1/2	3/4	-


AS

CONSTRUCTION

YAGEO

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.4.


OUTLINES

DIMENSIONS

Table 2

TYPE	L (mm)	W (mm)	H (mm)	lı (mm)	l ₂ (mm)
AS0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AS0805	2.00±0.10	1,25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
AS1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.40±0.20

Chin Resistor Surface Mount AS SERIES 0603/0805/1206

ELECTRICAL CHARACTERISTICS

Table 3

CHAI			CHARACTER	ARACTERISTICS			
TYPE	POWER	RESISTANCE RANGE	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
	1/10W						
AS0603	1/5W			75V	150V	150V	
	1/4W		_				
	1/8W	E24 5%, 10%, 20%					$1\Omega \le R \le 10\Omega$
AS0805	1/4W	$ \Omega \le R \le M\Omega $	FF 9C += 11FF 9C	150) /	2001/	2001/	± 200 ppm°C
A30003	1/3W	E24/E96 0.5%, 1%	–55 °C to +155 °C	150V	300V	300V	$10\Omega < R \le 1M\Omega$
	1/2W	$ \Omega \le R \le M\Omega $					± 100 ppm°C
	1/4W		_				
AS1206	1/2W			200 V	400 V	500V	
	3/4W						

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

 Table 4
 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AS0603/0805/1206
Paper taping reel (R)	7" (178 mm)	5,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

AS

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

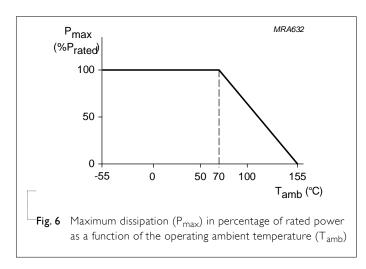
POWER RATING

YAGEO

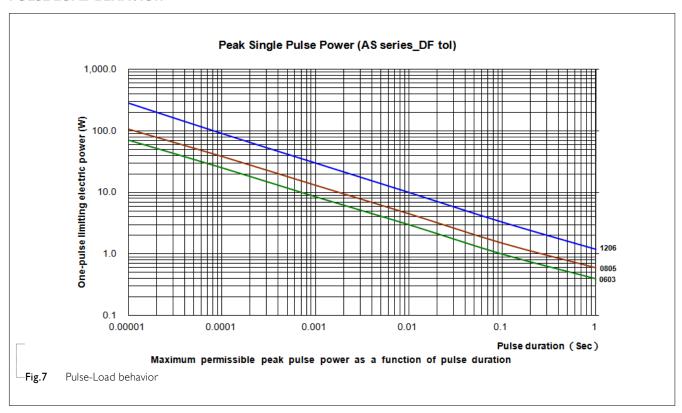
Each type rated power at 70 °C: AS0603: 1/10W, 1/5W, 1/4W AS0805: I/8W, I/4W, I/3W, I/2W AS1206: I/4W, I/2W, 3/4W

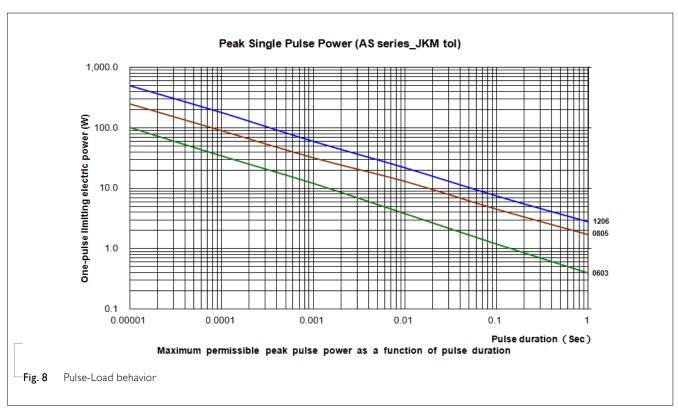
RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where


V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)

 $R = Resistance value (\Omega)$

PULSE LOAD BEHAVIOR

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at TA = 155 °C, unpowered	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I0% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (0.5\% \pm 0.05\Omega)$ for D/F tol $\pm (1.0\% \pm 0.05\Omega)$ for J tol No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm (0.5\% \pm 0.05\Omega)$ for D/F tol $\pm (1.0\% \pm 0.05\Omega)$ for J tol
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05 Ω)

Chip Resistor Surface Mount As SERIES 0603/0805/1206

TEST METHOD	PROCEDURE	REQUIREMENTS
AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat,	Well tinned (≥95% covered) No visible damage
	dipping at 235±3 °C for 5±0.5 seconds.	
	(b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.	
	(c) Method D, steam aging 8 hours, dipping at 260 ± 3 °C for 30 ± 0.5 seconds.	
AEC-O200 Test 21	Chins mounted on a 90mm plass enoxy resin	±(1.0%+0.05Ω)
AEC-Q200-005	PCB (FR4)	±(1.070 · 0.0032)
	Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
	Holding time: minimum 60 seconds	
MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C	Refer to table 3
	Formula:	
	T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
	Where t_1 =+25 °C or specified room temperature	
	t_2 =–55 °C or +125 °C test temperature	
	R _I =resistance at reference temperature in ohms	
	R ₂ =resistance at test temperature in ohms	
IEC60115-1 4.13	2.5 times of rated voltage or maximum	$\pm (1.0\% + 0.05\Omega)$ for D/F tol
	overload voltage whichever is less for 5 sec at room temperature	$\pm (2.0\% + 0.05\Omega)$ for J tol
ASTM-B-809-95*	Sulfur 750 hours, 105 °C, unpowered	± (4.0%+0.05Ω)
	AEC-Q200 Test 2I AEC-Q200 Test 2I AEC-Q200-005 MIL-STD-202 Method 304	AEC-Q200 Test 18 J-STD-002 Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds. AEC-Q200 Test 21 AEC-Q200-005 Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds MIL-STD-202 Method 304 At +25/-55 °C and +25/+125 °C Formula: T.C.R= R2-R1 R1(t2-t1) Where t1=+25 °C or specified room temperature t2=-55 °C or +125 °C test temperature R1=resistance at reference temperature in ohms R2=resistance at test temperature in ohms R2=resistance at test temperature in ohms 1EC60115-1 4.13 2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature

Chip Resistor Surface Mount As SERIES 0603/0805/1206

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Nov. 30, 2020	-	- New product datasheet
Version I	Apr. 08, 2021	-	- Upgrade to Automotive Grade

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

[&]quot;The reimbursement is limited to the value of the products."